Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Transportation Science
Article . 1987 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Distribution Problems with Time Windows: Part I

Modeling distribution problems with time windows. I
Authors: Daganzo, Carlos F.;

Modeling Distribution Problems with Time Windows: Part I

Abstract

This paper shows how distribution problems with delivery time constraints can be modeled approximately with just a few variables. Its objective is neither to develop a scheduling algorithm nor an exact predictive method; rather, it is to illustrate some trade-offs and principles that can be used for planning and algorithm development. A workday is divided into time periods. Time windows are modeled by specifying the period in which a vehicle should visit each customer. (The companion paper explores scenarios where many customers do not specify a time window, and thus, it is advantageous not to allocate all the customers to periods.) Travel distance expressions are provided for a “cluster-first, route-second” strategy, similar to some routing methods currently in use. Travel distance expressions are also provided for refinements of the strategy, including one in which tours are systematically staggered, overlapping. The consequent reductions in travel distance can be quite significant. We suggest here that more attention should be paid to the clustering part of algorithm construction, and point to ways in which the customers served by one vehicle should be selected.

Related Organizations
Keywords

delivery time constraints, Deterministic scheduling theory in operations research, routing, distribution problems, cluster-first, route- second

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!