
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>A simple method for understanding how gene duplication has contributed to genomic structure was applied to the complete genomes ofCaenorhabditis elegans, Drosophila melanogaster, and yeast Saccharomyces cerevisiae. By this method, the genes belonging to gene families (the paranome) were identified, and the extent of sharing of two or more families between genomic windows was compared with that expected under a null model. The results showed significant evidence of duplication of genomic blocks in both C. elegans and yeast. In C. elegans, the five block duplications identified all occurred intra-chromosomally, and all but one occurred quite recently. In yeast, by contrast, 39 duplicated blocks were identified, and all but one of these was inter-chromosomal. Of these 39 blocks, 28 showed evidence of ancient duplication, possibly as a result of an ancient polyploidization event. By contrast, three blocks showed evidence of very recent duplication, while seven others showed a mixture of ancient and recent duplication events. Thus, duplication of genomic blocks has been an ongoing feature of yeast evolution over the past 200–300 million years.
Genome, Genes, Fungal, Computational Biology, Genes, Insect, Evolution, Molecular, Genes, Gene Duplication, Multigene Family, Animals, Genome, Fungal, Genes, Helminth
Genome, Genes, Fungal, Computational Biology, Genes, Insect, Evolution, Molecular, Genes, Gene Duplication, Multigene Family, Animals, Genome, Fungal, Genes, Helminth
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 157 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
