Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
Genome Research
Article . 2001 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gene Duplication and the Structure of Eukaryotic Genomes

Authors: Austin L. Hughes; Robert Friedman;

Gene Duplication and the Structure of Eukaryotic Genomes

Abstract

A simple method for understanding how gene duplication has contributed to genomic structure was applied to the complete genomes ofCaenorhabditis elegans, Drosophila melanogaster, and yeast Saccharomyces cerevisiae. By this method, the genes belonging to gene families (the paranome) were identified, and the extent of sharing of two or more families between genomic windows was compared with that expected under a null model. The results showed significant evidence of duplication of genomic blocks in both C. elegans and yeast. In C. elegans, the five block duplications identified all occurred intra-chromosomally, and all but one occurred quite recently. In yeast, by contrast, 39 duplicated blocks were identified, and all but one of these was inter-chromosomal. Of these 39 blocks, 28 showed evidence of ancient duplication, possibly as a result of an ancient polyploidization event. By contrast, three blocks showed evidence of very recent duplication, while seven others showed a mixture of ancient and recent duplication events. Thus, duplication of genomic blocks has been an ongoing feature of yeast evolution over the past 200–300 million years.

Related Organizations
Keywords

Genome, Genes, Fungal, Computational Biology, Genes, Insect, Evolution, Molecular, Genes, Gene Duplication, Multigene Family, Animals, Genome, Fungal, Genes, Helminth

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 10%
Top 1%
Top 1%
bronze