Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2010 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bile Acid Reflux Contributes to Development of Esophageal Adenocarcinoma via Activation of Phosphatidylinositol-Specific Phospholipase Cγ2 and NADPH Oxidase NOX5-S

Authors: Weibiao Cao; Jie Hong; David Lambeth; Ronald A. DeLellis; Jose Behar; Murray B. Resnick; Li Juan Wang; +1 Authors

Bile Acid Reflux Contributes to Development of Esophageal Adenocarcinoma via Activation of Phosphatidylinositol-Specific Phospholipase Cγ2 and NADPH Oxidase NOX5-S

Abstract

Abstract Gastroesophageal reflux disease complicated by Barrett's esophagus (BE) is a major risk factor for esophageal adenocarcinoma (EA). However, the mechanisms of the progression from BE to EA are not fully understood. Besides acid reflux, bile acid reflux may also play an important role in the progression from BE to EA. In this study, we examined the role of phosphatidylinositol-specific phospholipase C (PI-PLC) and a novel NADPH oxidase NOX5-S in bile acid–induced increase in cell proliferation. We found that taurodeoxycholic acid (TDCA) significantly increased NOX5-S expression, hydrogen peroxide (H2O2) production, and cell proliferation in EA cells. The TDCA-induced increase in cell proliferation was significantly reduced by U73122, an inhibitor of PI-PLC. PI-PLCβ1, PI-PLCβ3, PI-PLCβ4, PI-PLCγ1, and PI-PLCγ2, but not PI-PLCβ2 and PI-PLCδ1, were detectable in FLO cells by Western blot analysis. Knockdown of PI-PLCγ2 or extracellular signal-regulated kinase (ERK) 2 mitogen-activated protein (MAP) kinase with small interfering RNAs (siRNA) significantly decreased TDCA-induced NOX5-S expression, H2O2 production, and cell proliferation. In contrast, knockdown of PI-PLCβ1, PI-PLCβ3, PI-PLCβ4, PI-PLCγ1, or ERK1 MAP kinase had no significant effect. TDCA significantly increased ERK2 phosphorylation, an increase that was reduced by U73122 or PI-PLCγ2 siRNA. We conclude that TDCA-induced increase in NOX5-S expression and cell proliferation may depend on sequential activation of PI-PLCγ2 and ERK2 MAP kinase in EA cells. It is possible that bile acid reflux present in patients with BE may increase reactive oxygen species production and cell proliferation via activation of PI-PLCγ2, ERK2 MAP kinase, and NADPH oxidase NOX5-S, thereby contributing to the development of EA. Cancer Res; 70(3); 1247–55

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Cholagogues and Choleretics, Esophageal Neoplasms, Phosphodiesterase Inhibitors, Bile Reflux, Blotting, Western, Membrane Proteins, NADPH Oxidases, Hydrogen Peroxide, Adenocarcinoma, Gene Expression Regulation, Enzymologic, Bile Acids and Salts, Enzyme Activation, Gene Expression Regulation, Neoplastic, Isoenzymes, NADPH Oxidase 5, Cell Line, Tumor, Humans, Estrenes, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research