Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Translati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Translational Medicine
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Translational Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Translational Medicine
Article . 2019
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources

Authors: Kai Zheng; Zhu-Hong You; Lei Wang; Yong Zhou; Li-Ping Li; Zheng-Wei Li;

MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources

Abstract

Emerging evidences show that microRNA (miRNA) plays an important role in many human complex diseases. However, considering the inherent time-consuming and expensive of traditional in vitro experiments, more and more attention has been paid to the development of efficient and feasible computational methods to predict the potential associations between miRNA and disease.In this work, we present a machine learning-based model called MLMDA for predicting the association of miRNAs and diseases. More specifically, we first use the k-mer sparse matrix to extract miRNA sequence information, and combine it with miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity information. Then, more representative features are extracted from them through deep auto-encoder neural network (AE). Finally, the random forest classifier is used to effectively predict potential miRNA-disease associations.The experimental results show that the MLMDA model achieves promising performance under fivefold cross validations with AUC values of 0.9172, which is higher than the methods using different classifiers or different feature combination methods mentioned in this paper. In addition, to further evaluate the prediction performance of MLMDA model, case studies are carried out with three Human complex diseases including Lymphoma, Lung Neoplasm, and Esophageal Neoplasms. As a result, 39, 37 and 36 out of the top 40 predicted miRNAs are confirmed by other miRNA-disease association databases.These prominent experimental results suggest that the MLMDA model could serve as a useful tool guiding the future experimental validation for those promising miRNA biomarker candidates. The source code and datasets explored in this work are available at http://220.171.34.3:81/ .

Related Organizations
Keywords

Support Vector Machine, microRNA, Auto-encoder neural network, Research, R, Reproducibility of Results, Machine Learning, MicroRNAs, Association prediction, ROC Curve, Databases, Genetic, Medicine, Humans, Disease, Random forest

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%
Green
gold