
pmid: 7948594
Fibroblastic cells in vitro were exposed to powders of titanium, titanium-aluminium-vanadium alloy and cobalt-chrome-molybdenum (Co-Cr-Mo) alloy, either in direct contact with the cells or separated from the cells by a microporous membrane. Fine particles of all the materials reduced cell growth when in direct contact with cells, but only the finest particles of Co-Cr-Mo alloy caused cell damage through the microporous membrane. This provides further evidence that there is a mechanism of cell damage in vitro which depends on a direct interaction between cells and particles and is largely independent of the chemical nature of the particle.
Titanium, Vitallium, Alloys, Animals, Cell Count, Fibroblasts, Particle Size, Cells, Cultured, Rats
Titanium, Vitallium, Alloys, Animals, Cell Count, Fibroblasts, Particle Size, Cells, Cultured, Rats
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
