Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1981 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1981
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Order of events in the yeast secretory pathway

Authors: Susan Ferro; Peter Novick; Randy Schekman;

Order of events in the yeast secretory pathway

Abstract

Abstract The sequence of posttranslational events in the export of yeast glycoproteins has been determined with the aid of mutants that affect the secretory apparatus. Temperature-sensitive secretory mutants ( sec ) of S. cerevisiae, when incubated at a nonpermissive growth temperature (37°C), accumulate intracellular precursor forms of exported glycoproteins, such as invertase, and expand or amplify one or more of three different secretory organelles. Characterization of haploid double- sec -mutant strains, with regard to the structure of the accumulated invertase and the morphology of the exaggerated organelles, allows assessment of the order in which the gene products are required, the sequence of invertase maturation steps and a pathway of secretory organelles. The transitions from one organelle to the next require energy and sec gene products. One of the mutants ( sec7 ) accumulates a different organelle depending on the concentration of glucose in the medium. In normal growth medium (2% glucose), a thermally irreversible structure, the Berkeley body, predominates; in low glucose (0.1%), Golgi structures accumulate thermoreversibly. The results are consistent with the following model. Secretory proteins enter the ER, where the initial steps of glycosylation occur. Nine or more sec gene products and energy are required to transfer material to a Golgi-like structure, where further glycosylation occurs. Two or more functions and energy are required to package nearly fully glycosylated proteins into vesicles that are then transported into the bud, where they fuse with the plasma membrane in a process that requires at least ten additional gene products and energy.

Related Organizations
Keywords

Organoids, Glucose, Glycoside Hydrolases, beta-Fructofuranosidase, Golgi Apparatus, Saccharomyces cerevisiae, Endoplasmic Reticulum, Energy Metabolism, Glycoproteins, Sucrase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    766
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
766
Top 1%
Top 0.1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?