Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Calcified Tissue International
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Treatment with Parathyroid Hormone hPTH(1-34), hPTH(1-31), and Monocyclic hPTH(1-31) Enhances Fracture Strength and Callus Amount After Withdrawal Fracture Strength and Callus Mechanical Quality Continue to Increase

Authors: Andreassen, T.T.; Willick, G.E.; Morley, P.; Whitfield, J.F.;

Treatment with Parathyroid Hormone hPTH(1-34), hPTH(1-31), and Monocyclic hPTH(1-31) Enhances Fracture Strength and Callus Amount After Withdrawal Fracture Strength and Callus Mechanical Quality Continue to Increase

Abstract

The influence of intermittent hPTH(1-34)NH2, hPTH(1-31)NH2, and monocyclic [Leu27]cyclo (Glu22-Lys26)hPTH(1-31)NH2 treatment on callus formation, mechanical strength, and callus tissue mechanical quality of tibial fractures in rats was investigated after 8 and 16 weeks of healing. In the 8 weeks of healing animals, the PTH-peptides were injected subcutaneously during the entire observation period (15 nmol/kg/day [hPTH(1-34)NH2: 15 nmol = 60 microg]), and control animals with fractures were given vehicle. In the 16 weeks of healing animals, the PTH-peptides were injected only during the first 8 weeks of healing (15 nmol/kg/day), after which the animals were left untreated during the rest of the healing period. After the first 8 weeks of healing, increased fracture strength and callus volume were seen in the PTH-treated rats (ultimate load 66%, ultimate stiffness 58%, callus volume 28%), and the three peptides were equally effective. No difference in callus tissue mechanical quality was found between PTH and vehicle animals. After 16 weeks of healing, no differences in fracture strength, callus volume, or callus tissue mechanical quality were seen between PTH and vehicle. When comparing PTH-treated animals at 8 and 16 weeks, fracture strength and callus tissue mechanical quality continued to increase after the withdrawal of PTH (ultimate load 23%, ultimate stress 88%, elastic modulus 87%) and external callus volume declined during this period (27%).

Keywords

Fracture Healing, Recovery of Function, Drug Administration Schedule, Peptide Fragments, Rats, Tibial Fractures, Disease Models, Animal, Parathyroid Hormone, Tensile Strength, Animals, Female, Bony Callus, Rats, Wistar

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!