
ObjectiveBrown adipose tissue (BAT) generates heat in response to cold, and low BAT activity has been linked to obesity. However, recent studies were inconclusive as to whether BAT is involved in diet‐induced thermogenesis and mitigates weight gain from prolonged overeating. Therefore, this study investigated whether BAT activity is related to metabolic adaptation arising from 8 weeks of overfeeding in humans.MethodsFourteen men (aged 24 ± 3 years, BMI 24.5 ± 1.6 kg/m2) were overfed by 40% for 8 weeks. Before and after, energy expenditure and metabolic adaptation were measured by whole‐room respiratory calorimetry. A marker of BAT activity was measured using infrared imaging of the supraclavicular BAT depot.ResultsAt the end of 8 weeks of overfeeding, metabolic adaptation—defined as the percent increase in sleeping energy expenditure beyond that expected from weight gain—rose from −0.9 ± 3.9% to 4.7 ± 5.6% (P = 0.001). However, BAT thermal activity was unchanged (P = 0.81). Moreover, BAT thermal activity did not correlate with the degree of metabolic adaptation (P = 0.32) or with the change in body weight (P = 0.51).ConclusionsBAT thermal activity does not change in response to overfeeding, nor does it correlate with adaptive thermogenesis. Our data suggest that BAT does not mediate metabolic adaptation to overeating in humans.
Adult, Male, Body Weight, Thermogenesis, Hyperphagia, Weight Gain, Adaptation, Physiological, Young Adult, Adipose Tissue, Brown, Humans, Energy Metabolism
Adult, Male, Body Weight, Thermogenesis, Hyperphagia, Weight Gain, Adaptation, Physiological, Young Adult, Adipose Tissue, Brown, Humans, Energy Metabolism
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
