
Abstract The Gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a nondiffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins. This report demonstrates that fibrin is an essential component of T cell–mediated defense against plague but can be dispensable for Ab-mediated defense. Genetic or pharmacologic depletion of fibrin abrogated innate and T cell–mediated defense in mice challenged intranasally with Y. pestis. The fibrin-deficient mice displayed reduced survival, increased bacterial burden, and exacerbated hemorrhagic pathology. They also showed fewer neutrophils within infected lung tissue and reduced neutrophil viability at sites of liver infection. Depletion of neutrophils from wild-type mice weakened T cell–mediated defense against plague. The data suggest that T cells combat plague in conjunction with neutrophils, which require help from fibrin to withstand Y. pestis encounters and effectively clear bacteria.
Mice, Knockout, Fibrin, Plague, Yersinia pestis, Fibrinogen, Immunity, Innate, Mice, Inbred C57BL, Mice, Plasminogen Activators, Bacterial Proteins, T-Lymphocyte Subsets, Animals
Mice, Knockout, Fibrin, Plague, Yersinia pestis, Fibrinogen, Immunity, Innate, Mice, Inbred C57BL, Mice, Plasminogen Activators, Bacterial Proteins, T-Lymphocyte Subsets, Animals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
