Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 1984 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sequence of the Saccharomyces GAL region and its transcription in vivo

Authors: Bruce A. Citron; John E. Donelson;

Sequence of the Saccharomyces GAL region and its transcription in vivo

Abstract

In Saccharomyces, the enzymes used to convert galactose to glucose are specified by three coordinately expressed, tightly linked genes, GAL7, GAL10, and GAL1. These genes are induced by galactose and are controlled by the positive regulator gene gal4 and the negative regulator gene gal80. GAL81 mutations, which are known to alter the gal4 protein, produce a constitutive phenotype. We have cloned fragments of Saccharomyces carlsbergensis DNA that span 26.3 kilobases surrounding the three clustered GAL genes. About 5 kilobases of the sequence was determined, which includes the entire GAL1 gene, the two intercistronic regions, and portions of the coding sequences of GAL10 and GAL7. Some amino acid homology between the GAL1 gene product, galactokinase, and the Escherichia coli galactokinase was detected. By using various Saccharomyces DNA fragments, the accumulation of GAL1 and GAL10 RNA in yeast cells after induction with galactose was studied. Our results, using wild-type, gal4-, gal80-, and GAL81-1- yeast cells, support the hypothesis that control is exerted at the transcriptional level.

Related Organizations
Keywords

Base Sequence, Transcription, Genetic, Genes, Fungal, Galactose, RNA, Fungal, Galactokinase, Kinetics, Saccharomyces, UDPglucose 4-Epimerase, Genes, Genes, Regulator, Operon, UTP-Hexose-1-Phosphate Uridylyltransferase, Cloning, Molecular, Codon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Average
Top 1%
Top 10%
bronze