
The Capacitated Vehicle Routing Problem with Time Windows is the well-known combinatorial optimization problem having numerous valuable applications in operations research. In this paper, following the famous framework by M. Haimovich and A. Rinnooy Kan and technique by T. Asano et al., we propose a novel approximation scheme for the planar Euclidean CVRPTW. For any fixed \(\varepsilon >0\), the proposed scheme finds a \((1+\varepsilon )\)-approximate solution of CVRPTW in time $$TIME(\mathrm {TSP},\rho ,n)+O(n^2)+O\left( e^{O\left( q\,\left( \frac{q}{\varepsilon }\right) ^3(p\rho )^2\log (p\rho )\right) }\right) ,$$ where q is the given vehicle capacity bound, p is the number of time windows for servicing the customers, and \(TIME(\mathrm {TSP},\rho ,n)\) is the time needed to find a \(\rho \)-approximate solution for an auxiliary instance of the metric TSP.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
