Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Water Reu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water Reuse and Desalination
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Water Reuse and Desalination
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Reuse
Article . 2021
Data sources: DOAJ
https://doi.org/10.2166/978178...
Part of book or chapter of book . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microcoagulation improved the performance of the UF–RO system treating the effluent from a coastal municipal wastewater treatment plant: a pilot-scale study

Authors: Tong Yu; Chenlu Xu; Feng Chen; Haoshuai Yin; Hao Sun; Lihua Cheng; Xuejun Bi;

Microcoagulation improved the performance of the UF–RO system treating the effluent from a coastal municipal wastewater treatment plant: a pilot-scale study

Abstract

Abstract Microcoagulation has recently been considered as a promising pretreatment for an ultrafiltration (UF) process from numerous studies. To investigate the effects of microcoagulation on the performance of the UF–reverse osmosis (RO) system treating wastewater with high and fluctuant salinity, different dosages of coagulant (poly-aluminum chloride) were added prior to the UF unit in a pilot-scale UF–RO system for a 10-week period operation. Microcoagulation obviously improved the contaminant removal and cleaning efficiencies, including water backwash, chemical enhanced backwash and cleaning in place processes. Organic fouling was dominated during the initial stage of the RO membrane fouling. The microbial communities of water samples and foulant on the RO membrane were similar to those of seawater and foulant on the RO membranes from seawater RO plants. The microbial community of the foulant on the membrane was similar to that of UF permeate and RO concentrate. These results demonstrated that microcoagulation could improve the performance of the UF–RO system treating the effluent with high and fluctuant salinity from a coastal municipal wastewater treatment plant.

Related Organizations
Keywords

membrane fouling, microcoagulation, pilot uf–ro system, membrane cleaning, Environmental technology. Sanitary engineering, cmwwtp, TD1-1066

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold