Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hormone-response Genes Are Direct in Vivo Regulatory Targets of Brahma (SWI/SNF) Complex Function

Authors: Claudia B. Zraly; Andrew K. Dingwall; Frank A. Middleton;

Hormone-response Genes Are Direct in Vivo Regulatory Targets of Brahma (SWI/SNF) Complex Function

Abstract

Metazoan SWI/SNF chromatin remodeling complexes exhibit ATP-dependent activation and repression of target genes. The Drosophila Brahma (SWI/SNF) complex subunits BRM and SNR1 are highly conserved with direct counterparts in yeast (SWI2/SNF2 and SNF5) and mammals (BRG1/hBRM and INI1/hSNF5). BRM encodes the catalytic ATPase required for chromatin remodeling and SNR1 is a regulatory subunit. Importantly, SNR1 mediates ATP-independent repression functions of the complex in cooperation with histone deacetylases and direct contacts with gene-specific repressors. SNR1 and INI1, as components of their respective SWI/SNF complexes, are important for developmental growth control and patterning, with direct function as a tumor suppressor. To identify direct regulatory targets of the Brm complex, we performed oligonucleotide-based transcriptome microarray analyses using RNA isolated from mutant fly strains harboring dominant-negative alleles of snr1 and brm. Steady-state RNA isolated from early pupae was examined, as this developmental stage critically requires Brm complex function. We found the hormone-responsive Ecdysone-induced genes (Eig) were strongly misregulated and that the Brm complex is directly associated with the promoter regions of these genes in vivo. Our results reveal that the Brm complex assists in coordinating hormone-dependent transcription regulation of the Eig genes.

Related Organizations
Keywords

Ecdysone, Gene Expression Profiling, Pupa, Cell Cycle Proteins, Genes, Insect, Chromatin, Drosophila melanogaster, Gene Expression Regulation, Larva, Mutation, Trans-Activators, Animals, Drosophila Proteins, RNA Interference, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
gold