
An important problem in ad-hoc microphone speech separation is how to guarantee the robustness of a system with respect to the locations and numbers of microphones. The former requires the system to be invariant to different indexing of the microphones with the same locations, while the latter requires the system to be able to process inputs with varying dimensions. Conventional optimization-based beamforming techniques satisfy these requirements by definition, while for deep learning-based end-to-end systems those constraints are not fully addressed. In this paper, we propose transform-average-concatenate (TAC), a simple design paradigm for channel permutation and number invariant multi-channel speech separation. Based on the filter-and-sum network (FaSNet), a recently proposed end-to-end time-domain beamforming system, we show how TAC significantly improves the separation performance across various numbers of microphones in noisy reverberant separation tasks with ad-hoc arrays. Moreover, we show that TAC also significantly improves the separation performance with fixed geometry array configuration, further proving the effectiveness of the proposed paradigm in the general problem of multi-microphone speech separation.
ICASSP 2020
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
