
To clarify the role and regulation of eosinophils, we subjected several key eosinophil-related genetically engineered mice to a chronic model of allergic airway inflammation aiming to identify results that were independent of the genetic targeting strategy. In particular, mice with defects in eosinophil development (Δdbl-GATA) and eosinophil recruitment [mice deficient in CCR3 (CCR3 knockout) and mice deficient in both eotaxin-1 and eotaxin-2 (eotaxin-1/2 double knockout)] were subjected to Aspergillus fumigatus -induced allergic airway inflammation. Allergen-induced eosinophil recruitment into the airway was abolished by 98%, 94%, and 99% in eotaxin-1/2 double knockout, CCR3 knockout, and Δdbl-GATA mice, respectively. Importantly, allergen-induced type II T helper lymphocyte cytokine production was impaired in the lungs of eosinophil- and CCR3-deficient mice. The absence of eosinophils correlated with reduction in allergen-induced mucus production. Notably, by using global transcript expression profile analysis, a large subset (29%) of allergen-induced genes was eosinophil- and CCR3-dependent; pathways downstream from eosinophils were identified, including in situ activation of coagulation in the lung. In summary, we present multiple lines of independent evidence that eosinophils via CCR3 have a central role in chronic allergic airway disease.
Chemokine CCL11, Inflammation, Mice, Knockout, Gene Expression Profiling, Receptors, CCR3, Allergens, Ligands, Eosinophils, Disease Models, Animal, Mice, Mucus, Gene Expression Regulation, Cell Movement, Chemokines, CC, Chronic Disease, Animals, Cytokines, Guanine Nucleotide Exchange Factors, Mast Cells, Bronchial Hyperreactivity
Chemokine CCL11, Inflammation, Mice, Knockout, Gene Expression Profiling, Receptors, CCR3, Allergens, Ligands, Eosinophils, Disease Models, Animal, Mice, Mucus, Gene Expression Regulation, Cell Movement, Chemokines, CC, Chronic Disease, Animals, Cytokines, Guanine Nucleotide Exchange Factors, Mast Cells, Bronchial Hyperreactivity
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 194 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
