
In this paper, we present a method of improving dependency parsing accuracy by combining parsers using error rates. We use four parsers: MSTParser, MaltParser, TurboParser and MateParser, and the data of the analytical layer of the Prague Dependency Treebank. We parse data with each of the parsers and calculate error rates for several parameters such as POS of dependent tokens. These error rates are then used to determine weights of edges in an oriented graph created by merging all the parses of a sentence provided by the parsers. We find the maximum spanning tree in this graph (a dependency tree without cycles), and achieve a 1.3 % UAS/1.1 % LAS improvement compared to the best parser in our experiment.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
