
The cyclic treatment technique (redox cycling) comprising stages of material exposition in reducing and oxidizing high-temperature environments and intermediate degassing between these stages has been developed to improve the structural integrity of YSZ-NiO ceramic anode substrates for solid oxide fuel cells. A series of specimens were singly reduced in a hydrogenous environment (the Ar-5 vol% Н2 mixture or hydrogen of 99.99 vol% H2 purity) under the pressure of 0.15 MPa or subjected to redox cycling at 600 or 800 °C. The influence of redox cycling at the treatment temperatures of 600 and 800 °C on the structure, strength and electrical conductivity of the material has been analysed. Using the treatment temperature 600 °C, a structure providing improved physical and mechanical properties of the material was formed. However, at the treatment temperature 800 °C, an anode structure with an array of microcracks was formed that significantly reduced the strength and electrical conductivity of the material.
Materials Science(all), Nano Review, Condensed Matter Physics
Materials Science(all), Nano Review, Condensed Matter Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
