
An analytic evaluation of the peak time of a disease allows for the installment of effective epidemic precautions. Recently, an explicit analytic, approximate expression (MT) for the peak time of the fraction of infected persons during an outbreak within the susceptible–infectious–recovered/removed (SIR) model had been presented and discussed (Turkyilmazoglu, 2021). There are three existing approximate solutions (SK-I, SK-II, and CG) of the semi-time SIR model in its reduced formulation that allow one to come up with different explicit expressions for the peak time of the infected compartment (Schlickeiser and Kröger, 2021; Carvalho and Gonçalves, 2021). Here we compare the four expressions for any choice of SIR model parameters and find that SK-I, SK-II and CG are more accurate than MT as long as the amount of population to which the SIR model is applied exceeds hundred by far (countries, ss, cities). For small populations with less than hundreds of individuals (families, small towns), however, the approximant MT outperforms the other approximants. To be able to compare the various approaches, we clarify the equivalence between the four-parametric dimensional SIR equations and their two-dimensional dimensionless analogue. Using Covid-19 data from various countries and sources we identify the relevant regime within the parameter space of the SIR model.
Physica D: Nonlinear Phenomena, 425
ISSN:0167-2789
ISSN:1872-8022
peak time, Epidemiology, peak thresholds, Epidemic; SIR model; Peak thresholds; Peak time; COVID-19, Epidemic, COVID-19, epidemic, Article, Peak thresholds, SIR model, Peak time
peak time, Epidemiology, peak thresholds, Epidemic; SIR model; Peak thresholds; Peak time; COVID-19, Epidemic, COVID-19, epidemic, Article, Peak thresholds, SIR model, Peak time
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
