Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Japanese Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Japanese Journal of Applied Physics
Article . 2000 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optical Bistability of the Negative Nonlinear Absorption Effect in Erbium-Doped Fibers Using a 1.5 µm Laser Diode

Authors: Yoshinobu Maeda;

Optical Bistability of the Negative Nonlinear Absorption Effect in Erbium-Doped Fibers Using a 1.5 µm Laser Diode

Abstract

Optical bistability derived from the negative nonlinear absorption effect was investigated in 470 ppm erbium-doped fibers using a 1.5 µm laser diode. Optical bistability was observed in a laser intensity range of 0.3 W/cm2 to 2.5 kW/cm2 at a fiber length of 6 m. The transmitted laser intensity (I out), propagating through the fiber, decreased exponentially in accordance with the well-known exponential law. However, the amplitude of the optical bistability (ΔI out) increased logarithmically as the fiber length was increased. It was clarified that ΔI out was proportional to the product of exp (-L) and log (L) as a function of the fiber length (L). The optical bistability can be explained by considering an enhanced absorption model for a four-level system of the Er3+ ion.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!