
pmid: 17906876
The subunit structure of low voltage activated T-type Ca2+ channels is still unknown. Co-expression of dihydropyridine receptor (DHPR) auxiliary subunits with T-type alpha1 subunits in heterologous systems has produced conflicting results. In developing foetal skeletal muscle fibres which abundantly express DHPR subunits, Cav3.2 (alpha1H) subunits are believed to underlie T-type calcium currents which disappear 2 to 3 weeks after birth. Therefore, a possible regulation of foetal skeletal muscle T-type Ca2+ channels by DHPR subunits was investigated in freshly isolated foetal skeletal muscle using knockout mice, which provide a powerful tool to address this question. The possible involvement of alpha1S (Cav1.1), beta1 and gamma1 DHPR subunits was tested using dysgenic (alpha1S-null), beta1a and gamma1 knockout mice. The results show that the absence of alpha1S, beta1 or gamma1 DHPR subunits does not significantly affect the electrophysiological properties of T-type Ca2+ currents in skeletal muscle, suggesting that (1) native Cav3.2 is not regulated by beta1 or gamma1 DHPR subunits; (2) T-type and L-type currents have distinct and not interchangeable roles.
Mice, Knockout, Patch-Clamp Techniques, Calcium Channels, L-Type, Muscle Fibers, Skeletal, Calcium Channels, T-Type, Mice, Protein Subunits, Pregnancy, Animals, Calcium, Female, [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Muscle, Skeletal
Mice, Knockout, Patch-Clamp Techniques, Calcium Channels, L-Type, Muscle Fibers, Skeletal, Calcium Channels, T-Type, Mice, Protein Subunits, Pregnancy, Animals, Calcium, Female, [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC], Muscle, Skeletal
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
