
arXiv: 2402.16310
Location prediction forecasts a user's location based on historical user mobility traces. To tackle the intrinsic sparsity issue of real-world user mobility traces, spatiotemporal contexts have been shown as significantly useful. Existing solutions mostly incorporate spatiotemporal distances between locations in mobility traces, either by feeding them as additional inputs to Recurrent Neural Networks (RNNs) or by using them to search for informative past hidden states for prediction. However, such distance-based methods fail to capture the time-varying temporal regularities of human mobility, where human mobility is often more regular in the morning than in other periods, for example; this suggests the usefulness of the actual timestamps besides the temporal distances. Against this background, we propose REPLAY, a general RNN architecture learning to capture the time-varying temporal regularities for location prediction. Specifically, REPLAY not only resorts to the spatiotemporal distances in sparse trajectories to search for the informative past hidden states, but also accommodates the time-varying temporal regularities by incorporating smoothed timestamp embeddings using Gaussian weighted averaging with timestamp-specific learnable bandwidths, which can flexibly adapt to the temporal regularities of different strengths across different timestamps. Our extensive evaluation compares REPLAY against a sizable collection of state-of-the-art techniques on two real-world datasets. Results show that REPLAY consistently and significantly outperforms state-of-the-art methods by 7.7\%-10.5\% in the location prediction task, and the bandwidths reveal interesting patterns of the time-varying temporal regularities.
Accepted by IEEE Transactions on Mobile Computing
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
