
Spinal muscular atrophy (SMA) affects about 1 in every 6000 children born and is the leading genetic cause of infant death. SMA is a recessive disorder caused by the mutation or deletion of Survival Motor Neuron-1 (SMN1). SMN2, a nearly identical copy gene, has the potential to encode the same protein as SMN1 and is retained in all SMA patients. The majority of SMN2-derived transcripts are alternatively spliced and therefore encode a truncated isoform lacking exon 7 (SMNDelta7), which is a defective protein because it is unstable, has a reduced ability to self-associate and is unable to efficiently function in SMN cellular activities. However, we have shown that the SMN C-terminus functions non-specifically, since heterologous sequences can compensate for the exon 7 sequence. Several classes of compounds identified in SMN-inducing high throughput screens have been proposed to function through a read-through mechanism; however, a functional analysis of the SMNDelta7 read-through product has not been performed. In this report, the SMNDelta7 read-through product is characterized and compared to the SMNDelta7 protein. In a series of in vitro and cell based assays, SMNDelta7 read-through product is shown to increase protein stability, promote neurite outgrowths in SMN deficient neurons, and significantly elevate SMN-dependent UsnRNP assembly in extracts from SMA patient fibroblasts. Collectively, these results demonstrate that SMNDelta7 read-through product is more active than the SMNDelta7 protein and suggest that SMA therapeutics that specifically induce SMNDelta7 read-through may provide an alternative platform for drug discovery.
Neurons, Transcription, Genetic, RNA-Binding Proteins, Nerve Tissue Proteins, SMN Complex Proteins, Transfection, Survival of Motor Neuron 1 Protein, Muscular Atrophy, Spinal, Survival of Motor Neuron 2 Protein, Animals, Humans, Cyclic AMP Response Element-Binding Protein
Neurons, Transcription, Genetic, RNA-Binding Proteins, Nerve Tissue Proteins, SMN Complex Proteins, Transfection, Survival of Motor Neuron 1 Protein, Muscular Atrophy, Spinal, Survival of Motor Neuron 2 Protein, Animals, Humans, Cyclic AMP Response Element-Binding Protein
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
