Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Chemical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chemical Theory and Computation
Article . 2020 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Iterative Configuration Interaction with Selection

Authors: Ning Zhang; Wenjian Liu; Mark R. Hoffmann;

Iterative Configuration Interaction with Selection

Abstract

Even when starting with a very poor initial guess, the iterative configuration interaction (iCI) approach can converge from above to full CI very quickly by constructing and diagonalizing a small Hamiltonian matrix at each macro/micro-iteration. However, iCI scales exponentially with respect to the numbers of electrons and orbitals. The problem can be mitigated by observing that a vast number of configurations have little weights in the wave function and do not contribute to the correlation energy. The real questions are then (a) how to identify important configurations in the early stage of the calculation and (b) how to account for the residual contributions of those unimportant configurations. It is generally true that if a high-quality yet compact variational space can be determined for describing the static correlation, a low-order treatment of the residual dynamic correlation would be sufficient. While this is common to all selected CI schemes, the `iCI with selection' scheme presented here has the following distinctive features: (1) Full spin symmetry is maintained. (2) Although the selection is performed on individual CSFs, it is orbital configurations (oCFG) that are used as the organizing units. (3) Given a coefficient pruning-threshold, the selection of important oCFGs/CSFs is performed iteratively until convergence. (4) At each iteration for the growth of wave function, the first-order interacting space is decomposed into disjoint subspaces to reduce memory requirement and facilitate parallelization. (5) Upper bounds for the interactions between oCFG pairs are used to screen each first-order interacting subspace before the first-order coefficients of individual CSFs are evaluated. (6) Upon termination of the selection, dynamic correlation is estimated by using the ENPT2 theory. The efficacy of the iCIPT2 scheme is demonstrated numerically by taking several examples.

Keywords

Chemical Physics (physics.chem-ph), Physics - Chemical Physics, FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 1%
Top 10%
Top 1%
Green
bronze
Related to Research communities