Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme’s catalytic mechanism 1 1Edited by K. Nagai

Authors: Tina Izard;

The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme’s catalytic mechanism 1 1Edited by K. Nagai

Abstract

Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme in the coenzyme A pathway that catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) in the presence of magnesium. To investigate the reaction mechanism, the high-resolution crystal structures of the Escherichia coli PPAT have been determined in the presence of either ATP or Ppant. Structural details of the catalytic center revealed specific roles for individual amino acid residues involved in substrate binding and catalysis. The side-chain of His18 stabilizes the expected pentacovalent intermediate, whereas the side-chains of Thr10 and Lys42 orient the nucleophile for an in-line displacement mechanism. The binding site for the manganese ion that interacts with the phosphate groups of the nucleotide has also been identified. Within the PPAT hexamer, one trimer is in its substrate-free state, whereas the other is in a substrate-bound state.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Hydrogen Bonding, Crystallography, X-Ray, Ligands, Nucleotidyltransferases, Catalysis, Protein Subunits, Structure-Activity Relationship, Adenosine Triphosphate, Pantetheine, Escherichia coli, Magnesium, Protein Structure, Quaternary, Dimerization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!