Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2018
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2018
License: CC 0
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Modelling enrolment in Cambrian trilobites

Authors: Esteve, Jorge; Rubio, Pedro; Zamora, Samuel; Rahman, Imran A.;

Data from: Modelling enrolment in Cambrian trilobites

Abstract

Trilobites were capable of enroling in different ways based on the flexible articulation of thoracic segments and associated interlocking devices; the type of enrolment (spiral or sphaeroidal) is thought to have largely depended on the coaptative devices that each trilobite used to enclose the body. Based on X-ray microtomography scans of complete enrolled specimens from the Cambrian, we created three-dimensional (3D) computer models to assess the kinematics needed to achieve both enrolment types. We demonstrate that closely related trilobites with little morphological variation (Bailiaspis?, Conocoryphe and Parabailiella) developed different enrolment types as a result of small variations in the number of thoracic segments and the angle between adjacent segments. Moreover, our models indicate that sphaeroidal enrolment, which is associated with a smaller number of thoracic segments, enabled faster encapsulation. This supports the hypothesis that there was a trend in the evolution of trilobites towards reduction in the number of thoracic segments in phylogenetically derived taxa in order to enhance the efficiency of enrolment.

Supplementary+Data+1Slices from XMT scan of two enrolled specimens of Bailiaspis? glabrata (MPZ2017/310-311).Supplementary+Data+2Slices from XMT scan of one enrolled specimen of Parabailella languedocensis (C-12).Supplementary+Model+1Interactive 3-D reconstruction of Bailiaspis? glabrata (MPZ2017/310) in VAXML format.Supplementary+Model+2Interactive 3-D reconstruction of Bailiaspis? glabrata (MPZ2017/311) in VAXML format.Supplementary+Model+3Interactive 3-D reconstruction of Parabailella languedocensis (C-12) in VAXML format.Supplementary+Movie+1Movie showing in real-time the logarithm curve of the spiral and sphaeroidal enrolment mechanism of the 3D model created using Bailiaspis? grabata.CompEnroll.movSupplementary+Movie+23-D model of Bailiaspis? glabrata showing the enrolment procedure.Supplementary+Movie.mov

Keywords

Conocoryphidae, Functional morphology, X-ray microtomography, Palaeozoic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
    download downloads 1
  • 6
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
6
1
Related to Research communities