
In this paper, we investigate progress toward improved software citation by examining current software citation practices. We first introduce our machine learning based data pipeline that extracts software mentions from the CORD-19 corpus, a regularly updated collection of more than 280,000 scholarly articles on COVID-19 and related historical coronaviruses. We then closely examine a stratified sample of extracted software mentions from recent CORD-19 publications to understand the status of software citation. We also searched online for the mentioned software projects and their citation requests. We evaluate both practices of referencing software in publications and making software citable in comparison with earlier findings and recent advocacy recommendations. We found increased mentions of software versions, increased open source practices, and improved software accessibility. Yet, we also found a continuation of high numbers of informal mentions that did not sufficiently credit software authors. Existing software citation requests were diverse but did not match with software citation advocacy recommendations nor were they frequently followed by researchers authoring papers. Finally, we discuss implications for software citation advocacy and standard making efforts seeking to improve the situation. Our results show the diversity of software citation practices and how they differ from advocacy recommendations, provide a baseline for assessing the progress of software citation implementation, and enrich the understanding of existing challenges.
Scholarly communication, Software citation, Electronic computers. Computer science, Data Science, Science policy, QA75.5-76.95
Scholarly communication, Software citation, Electronic computers. Computer science, Data Science, Science policy, QA75.5-76.95
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
