Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Natural G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Natural Gas Science and Engineering
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Elastic impedance parameterization and inversion for fluid modulus and dry fracture quasi-weaknesses in a gas-saturated reservoir

Authors: Xinpeng Pan; Guangzhi Zhang; Huaizhen Chen; Xingyao Yin;

Elastic impedance parameterization and inversion for fluid modulus and dry fracture quasi-weaknesses in a gas-saturated reservoir

Abstract

Abstract A single set of aligned vertical fractures embedded in a purely isotropic background can be considered as an effective long-wavelength transversely isotropic (HTI) medium with a horizontal axis of symmetry. Understanding the separated effect of fluid and fracture properties on seismic characteristics is important for the characterization of a gas-saturated fractured reservoir. Our goal is to demonstrate a direct approach to separate the effects of fluid and fracture properties on PP-wave reflection coefficient, and utilize the azimuthal seismic reflection data to estimate the fluid modulus and dry fracture quasi-weaknesses simultaneously in a gas-saturated fractured reservoir. Starting from Gassmann's poroelasticity theory and linear-slip model, we first derive expressions for the effective elastic stiffness matrix of a gas-saturated fracture-induced porous HTI medium. Using the assumption of small perturbations in rock moduli and small weaknesses, we then derive an expression for linearized PP-wave reflection coefficient for the case of a weak-contrast interface separating two weakly HTI media in terms of fluid modulus and dry (gas-filled) fracture weaknesses based on the perturbation matrix and scattering function, separating the effects of fluid and fracture properties on PP-wave seismic response. With a novel parameterization for dry fracture weaknesses, we propose a method of elastic impedance variation with offset and azimuth (EIVOA) inversion for fluid modulus and dry fracture quasi-weaknesses to reduce the uncertainty of the characterization of fluid and dry fracture properties. Combing Bayesian seismic inversion and regularization constraints, the fluid modulus and dry fracture quasi-weakness parameters are reasonably estimated in the case of synthetic and real seismic data containing a moderate noise in a gas-saturated fractured reservoir.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!