Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1987 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The surface cyclic AMP receptor in Dictyostelium. Levels of ligand-induced phosphorylation, solubilization, identification of primary transcript, and developmental regulation of expression.

Authors: P, Klein; R, Vaughan; J, Borleis; P, Devreotes;

The surface cyclic AMP receptor in Dictyostelium. Levels of ligand-induced phosphorylation, solubilization, identification of primary transcript, and developmental regulation of expression.

Abstract

A monospecific polyclonal antiserum to the surface cAMP receptor of Dictyostelium has been developed by immunization with purified receptor immobilized on particles of polyacrylamide and on nitrocellulose paper. In Western blots, the antiserum displays high affinity and specificity for both the R (Mr 40,000) and D (Mr 43,000) forms of the receptor previously identified by photoaffinity labeling with 8-azido-[32P] cAMP. These bands, labeled with the photoaffinity label or with 32 Pi, were quantitatively and specifically immunoprecipitated, supporting co-purification data that all represent the same polypeptide. The R form, found in unstimulated cells, contained at least 0.2 mol of phosphate/mol of receptor. The D form, generated by cAMP stimulation of intact cells, contained at least 4 mol of phosphate/mol of receptor. In the absence of detergents, the receptor was exclusively located on membranes. The receptor was solubilized effectively in Triton X-100 and sedimented as a broad peak of 5-7 S on sucrose velocity gradients. Western blots of membranes isolated at different times after starvation indicate that the appearance of cell surface cAMP binding sites during the aggregation stage of development (5-6 h) is due to de novo synthesis of receptor protein. Pulse labeling with [35S]methionine indicated that the receptor is most rapidly synthesized during the preaggregation stage of development (1-3 h), prior to its maximal accumulation in membranes. The serum specifically immunoprecipitates a polypeptide of Mr 37,000 from an in vitro translation reaction using RNA isolated from preaggregation stage cells. The time course of expression of the mRNA coding for the Mr 37,000 polypeptide parallels the rate of receptor synthesis in vivo.

Related Organizations
Keywords

Azides, Transcription, Genetic, Photochemistry, Immune Sera, Cell Membrane, Affinity Labels, Immunologic Tests, Receptors, Cyclic AMP, Gene Expression Regulation, Solubility, Antibody Specificity, Protein Biosynthesis, Cyclic AMP, Dictyostelium, Electrophoresis, Polyacrylamide Gel, RNA, Messenger, Phosphorylation, Immunosorbent Techniques

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Average
Top 10%
Top 1%
gold