Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smithsonian figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Chemistry
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generation of Antibodies Targeting Cleavable Cross-Linkers

Authors: Jasjot Singh; Srigayatri Ponnaiyan; Volkmar Gieselmann; Dominic Winter;

Generation of Antibodies Targeting Cleavable Cross-Linkers

Abstract

Chemical cross-linking has become a powerful tool for the analysis of protein structures and interactions by mass spectrometry. A particular strength of this approach is the ability to investigate native states in vivo, investigating intact organelles, cells, or tissues. For such applications, the cleavable cross-linkers disuccinimidyl sulfoxide (DSSO) and disuccinimidyl dibutyric urea (DSBU) are gaining increasing popularity, as they allow for the analysis of complex mixtures. It is inherently difficult to follow the reaction of cross-linkers with proteins in intact biological structures, stalling the optimization of in vivo cross-linking experiments. We generated polyclonal antibodies targeting DSSO- and DSBU-modified proteins, by injection of cross-linked bovine serum albumin (BSA) in rabbits. We show that the cross-linker-modified BSA successfully triggered an immune response, and that DSSO- and DSBU-specific antibodies were generated by the animals. Using affinity-purified antibodies specific for the individual cross-linkers, we demonstrate their application to the detection of cross-linker-modified proteins in Western blot and immunocytochemistry experiments of intact and permeabilized cells. Furthermore, we show their ability to immunoprecipitate DSSO/DSBU-modified proteins and provide evidence for their affinity toward water-quenched dead-links. These antibodies provide a valuable tool for the investigation of proteins modified with the cross-linkers DSSO and DSBU.

Related Organizations
Keywords

Chemical Sciences not elsewhere classified, permeabilized cells, Immunology, serum albumin, Biophysics, Western blot, water-quenched dead-links, Biochemistry, Antibodies, Mass Spectrometry, Inorganic Chemistry, Antibodies Targeting Cleavable Cros., cleavable cross-linkers disuccinimi., antibody, DSBU-modified proteins, polyclonal antibodies, Animals, vivo cross-linking experiments, Molecular Biology, mass spectrometry, affinity-purified antibodies, Serum Albumin, Bovine, Hematology, cross-linker-modified proteins, cross-linker-modified BSA, DSBU-specific antibodies, disuccinimidyl dibutyric urea, Cross-Linking Reagents, immunocytochemistry experiments, Sulfoxides, protein structures, Rabbits, cross-linkers DSSO, Physical Sciences not elsewhere classified, Biotechnology, Biological Sciences not elsewhere classified

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green