
A locating-dominating set LDS S of a graph G is a dominating set S of G such that for every two vertices u and v in $$VG \setminus S$$, $$Nu\cap S \ne Nv\cap S$$. The locating-domination number $$\gamma ^{L}G$$ is the minimum cardinality of a LDS of G. Further if S is a total dominating set then S is called a locating-total dominating set. In this paper we determine the domination, total domination, locating-domination and locating-total domination numbers for hypertrees.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
