Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Canadian Journal...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Canadian Journal of Chemical Engineering
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of fluid dynamic conditions in the selected static mixers part II‐determination of the residence time distribution

Authors: Magdalena Stec; Piotr Maria Synowiec;

Study of fluid dynamic conditions in the selected static mixers part II‐determination of the residence time distribution

Abstract

AbstractThe presented paper is part of the complete description of fluid‐dynamic conditions in the selected static mixers: Koflo and Kenics. The research was also performed for an empty pipe used as a reference state. The scope of work included the analysis of the residence time distribution in the mentioned devices for different Reynolds numbers for both laminar and turbulent flow regimes. The report contains a discussion about residence time distribution functionE(t), cumulative distribution functionF(t), as well as the parameters like the mean residence timetmand the varianceσ2. The main aim of the presented work was to show the applicability of static mixers as chemical reactors and to present their operation characteristics to evaluate the derogations distinguishing them from well known ideal states (i.e. plug flow or ideal mixing). As a result of the accomplished study it was proved that Reynolds number increase results in narrower RTD in all of the tested devices, however the fluid motion is far from plug flow due to axial and radial mixing and the considered equipment should be treated as non‐ideal reactors requiring some additional models for the right description. What is more, in the case of laminar flow, the Kenics static mixer showed the narrowest spread and was considered as the best solution among the studied devices. In the turbulent flow, the difference betweenE(t)functions for all of the mentioned equipment was so small that the suggestion of small impact of insert type on the RTD was made.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Related to Research communities
STARS EU
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!