Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Investigative Ophtha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Investigative Ophthalmology & Visual Science
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local Production of the Alternative Pathway Component Factor B Is Sufficient to Promote Laser-Induced Choroidal Neovascularization

Authors: Elizabeth C O'Quinn; Beth Coughlin; Kusumam Joseph; Kannan Kunchithapautham; Gloriane Schnabolk; Mausumi Bandyopadhyay; Tamara K. Nowling; +1 Authors

Local Production of the Alternative Pathway Component Factor B Is Sufficient to Promote Laser-Induced Choroidal Neovascularization

Abstract

Complement factor B (CFB) is a required component of the alternative pathway (AP) of complement, and CFB polymorphisms are associated with age-related macular degeneration (AMD) risk. Complement factor B is made in the liver, but expression has also been detected in retina and retinal pigment epithelium (RPE)-choroid. We investigated whether production of CFB by the RPE can promote AP activation in mouse choroidal neovascularization (CNV).Transgenic mice expressing CFB under the RPE65 promoter were generated and crossed onto factor B-deficient (CFB-KO) mice. Biological activity was determined in vitro using RPE monolayers and in vivo using laser-induced CNV. Contribution of systemic CFB was investigated using CFB-KO reconstituted with CFB-sufficient serum.Transgenic mice (CFB-tg) expressed CFB in RPE-choroid; no CFB was detected in serum. Cultured CFB-tg RPE monolayers secreted CFB apically and basally upon exposure to oxidative stress that was biologically active. Choroidal neovascularization sizes were comparable between wild-type and CFB-tg mice, but significantly increased when compared to lesions in CFB-KO mice. Injections of CFB-sufficient serum into CFB-KO mice resulted in partial reconstitution of systemic AP activity and significantly increased CNV size.Mouse RPE cells express and secrete CFB sufficient to promote RPE damage and CNV. This further supports that local complement production may regulate disease processes; however, the reconstitution experiments suggest that additional components may be sequestered from the bloodstream. Understanding the process of ocular complement production and regulation will further our understanding of the AMD disease process and the requirements of a complement-based therapeutic.

Keywords

Choroid, Lasers, Blotting, Western, Complement Pathway, Alternative, Enzyme-Linked Immunosorbent Assay, Mice, Transgenic, Retinal Pigment Epithelium, Real-Time Polymerase Chain Reaction, Choroidal Neovascularization, Mice, Inbred C57BL, Disease Models, Animal, Mice, Gene Expression Regulation, Electroretinography, Animals, RNA, Messenger, Cells, Cultured, Tomography, Optical Coherence, Complement Factor B

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold