Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Pharmaco...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2009
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Pharmacology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Concomitant downregulation of proliferation/survival pathways dependent on FGF-R3, JAK2 and BCMA in human multiple myeloma cells by multi-kinase targeting

Authors: G. Cassinelli; D. Ronchetti; D. Laccabue; M. Mattioli; G. Cuccuru; E. Favini; V. Nicolini; +4 Authors

Concomitant downregulation of proliferation/survival pathways dependent on FGF-R3, JAK2 and BCMA in human multiple myeloma cells by multi-kinase targeting

Abstract

The identification of proliferation/survival pathways constitutively activated by genetic alterations in multiple myeloma (MM), or sustained by the bone marrow (BM) microenvironment, provides novel opportunities for the development of targeted therapies. The deregulated function of protein tyrosine kinases plays a critical role in driving MM malignant phenotype. We investigated the effects of the multi-target tyrosine kinase inhibitor RPI-1 in a panel of human MM cell lines, including t(4;14) positive cell lines expressing the TK receptor FGF-R3. Cells harboring FGF-R3 activating mutations (KMS11 and OPM2) displayed the highest sensitivity to RPI-1 antiproliferative effect. The stimulating effect of the aFGF ligand was abrogated in cells harboring a non-constitutively active receptor. Drug treatment inhibited activation and expression of the FGF-R3(Y373C) mutant as well as aFGF-dependent signaling involving AKT and ERKs. Inhibition of JAK2, an additional RPI-1 target, resulted in STAT3 inactivation. Blockade of these proliferation/survival pathways was associated with caspase-dependent apoptosis. Moreover, drug treatment abrogated proliferative and pro-invasive stimuli provided by conditioned medium from mesenchymal stromal cells. Gene expression profile of KMS11 cells showed 22 upregulated and 52 downregulated genes upon RPI-1 treatment, with an early modulation of genes implicated in MM pathobiology such as SAT-1, MYC, MIP-1alpha/beta, FGF-R3, and the growth factor receptor B-cell maturation antigen (BCMA). Thus, concomitant blockade of FGF-R3 and JAK2 results in inhibition of several MM-promoting pathways, including BCMA-regulated signaling, and downregulation of disease-associated proteins. These data may have therapeutic implications in the design of treatment strategies resulting in the concomitant inhibition of FGF-R3 and JAK2 signaling pathways in t(4;14) MM.

Keywords

HMCL, Cell Survival, Blotting, Western, Down-Regulation, Apoptosis, MSC, RPI-1, BM, aFGF, Cell Line, Tumor, Humans, Immunoprecipitation, B-Cell Maturation Antigen, Protein Kinase Inhibitors, Cell Proliferation, Gene Expression Profiling, Janus Kinase 2, MM, GEP, Receptors, Fibroblast Growth Factor, BCMA, JAK2, FGFR3, Multiple Myeloma

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Green
bronze
Related to Research communities
Cancer Research