
Abstract The epigenome responds to changes in the extracellular environment, yet how this information is transmitted to the epigenetic regulatory machinery is unclear. Using a Saccharomyces cerevisiae yeast model, we demonstrate that target of rapamycin complex 1 (TORC1) signaling, which is activated by nitrogen metabolism and amino acid availability, promotes site-specific acetylation of histone H3 and H4 N-terminal tails by opposing the activity of the sirtuin deacetylases Hst3 and Hst4. TORC1 does so through suppression of the Tap42-regulated Sit4 (PP6) phosphatase complex, as sit4Δ rescues histone acetylation under TORC1-repressive conditions. We further demonstrate that TORC1 inhibition, and subsequent PP6 activation, causes a selective, rapid, nuclear accumulation of Hst4, which correlates with decreased histone acetylation. This increased Hst4 nuclear localization precedes an elevation in Hst4 protein expression, which is attributed to reduced protein turnover, suggesting that nutrient signaling through TORC1 may limit Hst4 nuclear accumulation to facilitate Hst4 degradation and maintain histone acetylation. This pathway is functionally relevant to TORC1 signaling since the stress sensitivity of a nonessential TORC1 mutant (tco89Δ) to hydroxyurea and arsenic can be reversed by combining tco89Δ with either hst3Δ, hst4Δ, or sit4Δ. Surprisingly, while hst3Δ or hst4Δ rescues the sensitivity tco89Δ has to low concentrations of the TORC1 inhibitor rapamycin, sit4Δ fails to do so. These results suggest Sit4 provides an additional function necessary for TORC1-dependent cell growth and proliferation. Collectively, this study defines a novel mechanism by which TORC1 suppresses a PP6-regulated sirtuin deacetylase pathway to couple nutrient signaling to epigenetic regulation.
Sirolimus, Saccharomyces cerevisiae Proteins, Cell Cycle, Acetylation, Saccharomyces cerevisiae, Investigations, Histone Deacetylases, Epigenesis, Genetic, Histones, Gene Expression Regulation, Fungal, Mutation, Protein Phosphatase 2, Signal Transduction, Transcription Factors
Sirolimus, Saccharomyces cerevisiae Proteins, Cell Cycle, Acetylation, Saccharomyces cerevisiae, Investigations, Histone Deacetylases, Epigenesis, Genetic, Histones, Gene Expression Regulation, Fungal, Mutation, Protein Phosphatase 2, Signal Transduction, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
