Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Geochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Geochemistry
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Geochemistry
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Geochemistry
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uranium fate in Hanford sediment altered by simulated acid waste solutions

Authors: Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; Kukkadapu, Ravi K.; Wang, Zheming; Wellman, Dawn M.; Truex, Michael J.;

Uranium fate in Hanford sediment altered by simulated acid waste solutions

Abstract

Abstract Infiltration of aqueous acidic waste to the subsurface may induce conditions that alter contaminant transport. Experiments were conducted to examine the effects of low pore water pH and associated changes to sediment properties on U(VI) behavior in sediments. Macroscopic batch experiments were combined with a variety of bulk characterization studies (Mossbauer and laser spectroscopy), micron-scale inspections (μ-XRF), and molecular scale interrogations (XANES) with the objectives to: 1) determine the extent of U(VI) partitioning to Hanford sediments exposed to acidic waste simulants and held at pH = 2, pH = 5, or under neutral conditions (pH = 8) at varying ionic strength, and in the presence of air [bench-top (BT) experiments] or in the absence of air [glove-box (GB) experiments]; and 2) determine the uranium micron-scale solid phase and associated valence state resulting from the experimental conditions. The investigation showed minimal overall changes in Fe mineralogy as a result of sediment exposure to acid solutions, but an increase in the highly reactive nano Fe fraction of the sediment. Greater uranium partitioning was observed at pH = 5 than at pH = 2 and 8. The μ-XRF inspections and XANES analyses confirmed that high concentration areas on sediment surfaces were rich in U(VI) in the BT experiments, and both U(IV) and U(VI) in the GB experiments. The laser spectroscopy data showed that uranyl phosphates {e.g., metaautunite [Ca(UO2)2(PO4)2·10–12H2O] and phosphuranylite [KCa(H3O)3(UO2)7(PO4)4O4·8H2O]} may have formed in the BT experiments. In the GB experiments, in addition to U(IV) phases, U(VI) phases may have also formed similar to those that are naturally present in the sediment, but at higher concentrations. The results provide insights about U(VI) mobility beneath acidic waste disposal sites.

Related Organizations
Keywords

Geochemistry and Petrology, Environmental Chemistry, Pollution

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
hybrid