Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1984 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chromatin structure at the 44D larval cuticle gene locus inDrosophila: the effect of a transposable element insertion

Authors: J C, Eissenberg; D A, Kimbrell; J W, Fristrom; S C, Elgin;

Chromatin structure at the 44D larval cuticle gene locus inDrosophila: the effect of a transposable element insertion

Abstract

The chromatin structure of the larval cuticle gene cluster at 44D was characterized in embryos from wild-type (Oregon R) and a variant line (2/3) of Drosophila melanogaster. A major DNase I hypersensitive (DH) site was found between genes II and III in the chromatin, in a position 5' to the transcriptional start of the genes in the cluster. The introduction of a 7.3 kilobase transposable element into the cluster in the 2/3 variant enhanced the sensitivity of the major site in 2/3 chromatin but had no other effect upon the pattern of DH sites associated with the wild-type sequences. The wild-type sequences were packaged into an ordered nucleosome-like array in embryos, as revealed by digestion with the chemical cleavage reagent (methidiumpropyl-EDTA) iron (II) [MPE . Fe(II)]. Nucleolytic cleavage within the transposable element chromatin shows it to be organized in an ordered array punctuated by several DH sites. While the patterns of DNase I hypersensitivity are similar in the vicinity of the direct terminal repeats, the patterns revealed by micrococcal nuclease and MPE . Fe(II) are not, indicating a different chromatin organization of these two identical sequences.

Related Organizations
Keywords

Drosophila melanogaster, Genes, Larva, DNA Transposable Elements, Animals, Deoxyribonuclease I, Genetic Variation, DNA, DNA Restriction Enzymes, Chromatin, Nucleosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
gold