Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2021 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The gibberellin signaling negative regulator RGA-LIKE3 promotes seed storage protein accumulation

Authors: Yilong Hu; Limeng Zhou; Yuhua Yang; Wenbin Zhang; Zhonghui Chen; Xiaoming Li; Qian Qian; +4 Authors

The gibberellin signaling negative regulator RGA-LIKE3 promotes seed storage protein accumulation

Abstract

Abstract Seed storage protein (SSP) acts as one of the main components of seed storage reserves, of which accumulation is tightly mediated by a sophisticated regulatory network. However, whether and how gibberellin (GA) signaling is involved in this important biological event is not fully understood. Here, we show that SSP content in Arabidopsis (Arabidopsis thaliana) is significantly reduced by GA and increased in the GA biosynthesis triple mutant ga3ox1/3/4. Further investigation shows that the DELLA protein RGA-LIKE3 (RGL3), a negative regulator of GA signaling, is important for SSP accumulation. In rgl3 and 35S:RGL3-HA, the expression of SSP genes is down- and upregulated, respectively, compared with that in the wild-type. RGL3 interacts with ABSCISIC ACID INSENSITIVE3 (ABI3), a critical transcription factor for seed developmental processes governing SSP accumulation, both in vivo and in vitro, thus greatly promoting the transcriptional activating ability of ABI3 on SSP genes. In addition, genetic evidence shows that RGL3 and ABI3 regulate SSP accumulation in an interdependent manner. Therefore, we reveal a function of RGL3, a little studied DELLA member, as a coactivator of ABI3 to promote SSP biosynthesis during seed maturation stage. This finding advances the understanding of mechanisms in GA-mediated seed storage reserve accumulation.

Related Organizations
Keywords

Genotype, Plant Growth Regulators, Arabidopsis Proteins, Gene Expression Regulation, Plant, Seed Storage Proteins, Seeds, Genetic Variation, Genes, Plant, Gibberellins, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
hybrid