
The removal of introns from eukaryotic RNA transcripts requires the activities of five multi-component ribonucleoprotein complexes and numerous associated proteins. The lack of mutations affecting splicing factors essential for animal survival has limited the study of the in vivo regulation of splicing. From a screen for suppressors of the Caenorhabditis elegans unc-93(e1500) rubberband Unc phenotype, we identified mutations in genes that encode the C. elegans orthologs of two splicing factors, the U2AF large subunit (UAF-1) and SF1/BBP (SFA-1). The uaf-1(n4588) mutation resulted in temperature-sensitive lethality and caused the unc-93 RNA transcript to be spliced using a cryptic 3' splice site generated by the unc-93(e1500) missense mutation. The sfa-1(n4562) mutation did not cause the utilization of this cryptic 3' splice site. We isolated four uaf-1(n4588) intragenic suppressors that restored the viability of uaf-1 mutants at 25 degrees C. These suppressors differentially affected the recognition of the cryptic 3' splice site and implicated a small region of UAF-1 between the U2AF small subunit-interaction domain and the first RNA recognition motif in affecting the choice of 3' splice site. We constructed a reporter for unc-93 splicing and using site-directed mutagenesis found that the position of the cryptic splice site affects its recognition. We also identified nucleotides of the endogenous 3' splice site important for recognition by wild-type UAF-1. Our genetic and molecular analyses suggested that the phenotypic suppression of the unc-93(e1500) Unc phenotype by uaf-1(n4588) and sfa-1(n4562) was likely caused by altered splicing of an unknown gene. Our observations provide in vivo evidence that UAF-1 can act in regulating 3' splice-site choice and establish a system that can be used to investigate the in vivo regulation of RNA splicing in C. elegans.
Molecular Sequence Data, Muscle Proteins, QH426-470, Genetics, Animals, Humans, Amino Acid Sequence, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Conserved Sequence, Base Sequence, Membrane Proteins, Nuclear Proteins, Splicing Factor U2AF, Alternative Splicing, Protein Subunits, Gene Expression Regulation, Ribonucleoproteins, Mutation, RNA Splice Sites, Carrier Proteins, Sequence Alignment, Research Article
Molecular Sequence Data, Muscle Proteins, QH426-470, Genetics, Animals, Humans, Amino Acid Sequence, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Conserved Sequence, Base Sequence, Membrane Proteins, Nuclear Proteins, Splicing Factor U2AF, Alternative Splicing, Protein Subunits, Gene Expression Regulation, Ribonucleoproteins, Mutation, RNA Splice Sites, Carrier Proteins, Sequence Alignment, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
