Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Controlling nucleation in perpendicularly magnetized nanowires through in-plane shape

Authors: R. Mansell; A. Beguivin; D. C. M. C. Petit; A. Fernández-Pacheco; J. H. Lee; R. P. Cowburn;

Controlling nucleation in perpendicularly magnetized nanowires through in-plane shape

Abstract

The nucleation field of perpendicularly magnetized nanowires can be controlled by changing their width, so that below a critical width the nucleation field decreases as the width decreases. Placing pads at the ends of the nanowires prevents any reduction in coercivity with width, demonstrating that at small widths domain walls nucleate from the ends of the wires. Using this technique, we are able to create asymmetric nanowires with controlled nucleation at a defined point. We also show how dipole fields from a neighboring wire in close proximity can be used to shift the hysteresis loop of the asymmetric nanowire, creating a simple NOT gate. These results show how control of the in-plane shape of perpendicularly magnetized nanoscale elements can directly lead to device functionality.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!