Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computational Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computational Biology and Chemistry
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utilisation of the OliveNet™ Library to investigate phenolic compounds using molecular modelling studies in the context of Alzheimer’s disease

Authors: Julia Liang; Eleni Pitsillou; Abella Y. L. Man; Sibonginkosi Madzima; Sarah M. Bresnehan; Michael E. Nakai; Andrew Hung; +1 Authors

Utilisation of the OliveNet™ Library to investigate phenolic compounds using molecular modelling studies in the context of Alzheimer’s disease

Abstract

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that affects over 47 million people worldwide, and is the most common form of dementia. There is a vast body of literature demonstrating that the disease is caused by an accumulation of toxic extracellular amyloid-β (Aβ) peptides and intracellular neurofibrillary tangles that consist of hyperphosphorylated tau. Adherence to the Mediterranean diet has been shown to reduce the incidence of AD and the phenolic compounds in extra virgin olive oil, including oleocanthal, have gained a significant amount of attention. A large number of these ligands have been described in the pre-existing literature and 222 of these compounds have been characterised in the OliveNet™ database. In this study, molecular docking was used to screen the 222 phenolic compounds from the OliveNet™ database and assess their ability to bind to various forms of the Aβ and tau proteins. The phenolic ligands were found to be binding strongly to the hairpin-turn of the Aβ1-40 and Aβ1-42 monomers, and binding sites were also identified in the tau fibril protein structures. Luteolin-4'-O-rutinoside, oleuricine A, isorhoifolin, luteolin-7-O-rutinoside, cyanidin-3-O-rutinoside and luteolin-7,4-O-diglucoside were predicted to be novel lead compounds. Molecular dynamics (MD) simulations performed using well-known olive ligands bound to Aβ1-42 oligomers highlighted that future work may examine potential anti-aggregating properties of novel compounds in the OliveNet™ database. This may lead to the development and evaluation of new compounds that may have efficacy against Alzheimer's disease.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!