
pmid: 33602522
The aim of this work is a control scheme implementation to deform a nonrigid object in which deformation dynamics are modeled by the finite element method. The deformation of a soft object is highly difficult to model because of its non-linearity, time-dependency, and material-response characteristics. Thus, the control implementation for Differential Drive Mobile Robots (DDMR) to deform an elastic object, is a challenge. The proposed steps to solve it are: Position-control designed over DDMR kinematics. Alignment-control applied for DDMRs orientation. The desired shape of the object is achieved using two contact points as the control nodes. A centralized vision algorithm was employed in each stage to obtain positions. To show the usefulness of the proposed scheme, numerical simulation, and real-time implementation were carried out.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
