Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archives of Oral Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Oral Biology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structure and mechanical properties of Ank/Ank mutant mouse dental tissues—An animal model for studying periodontal regeneration

Authors: H, Fong; B L, Foster; M, Sarikaya; M J, Somerman;

Structure and mechanical properties of Ank/Ank mutant mouse dental tissues—An animal model for studying periodontal regeneration

Abstract

Enamel, dentine and cementum are dental tissues with distinct functional properties associated with their unique hierarchical structures. Some potential ways to repair or regenerate lost tooth structures have been revealed in our studies focused on examining teeth obtained from mice with mutations at the mouse progressive ankylosis (ank) locus. Previous studies have shown that mice with such mutations have decreased levels of extracellular inorganic pyrophosphate (PP(i)) at local sites resulting in ectopic calcification in joint areas and in formation of a significantly thicker cementum layer when compared with age-matched wild-type (WT) tissue [Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000;289:265-70; Nociti Jr FH, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, et al. Cementum: a phosphate-sensitive tissue. J Dent Res 2002;81:817-21]. As a next step, to determine the quality of the cementum tissue formed in mice with a mutation in the ank gene (ank/ank), we compared the microstructure and mechanical properties of cementum and other dental tissues in mature ank/ank vs. age-matched WT mice. Backscattered scanning electron microscopy (SEM) imaging and transmission electron microscopy (TEM) analyses on mineralized tissues revealed no decrease in the extent of mineralization between ank/ank cementum vs. WT controls. Atomic-force-microscopy-based nanoindentation performed on enamel, dentine or cementum of ank/ank vs. age-matched WT molars revealed no significant difference in any of the tested tissues in terms of hardness and elastic modulus. These results indicate that the tissue quality was not compromised in ank/ank mice despite faster rate of formation and more abundant cementum when compared with age-matched WT mice. In conclusion, these data suggest that this animal model can be utilized for studies focused on defining mechanisms to promote cementum formation without loss of mechanical integrity.

Related Organizations
Keywords

Dental Cementum, Arthritis, Membrane Proteins, Microscopy, Atomic Force, Mice, Mutant Strains, Biomechanical Phenomena, Disease Models, Animal, Mice, Microscopy, Electron, Transmission, Hardness, Elastic Modulus, Dentin, Mutation, Microscopy, Electron, Scanning, Animals, Phosphate Transport Proteins, Regeneration, Cementogenesis, Dental Enamel, Periodontal Diseases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze