Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sparse Combinatorial Group Testing

Authors: Huseyin A. Inan; Peter Kairouz; Ayfer Ozgur;

Sparse Combinatorial Group Testing

Abstract

In combinatorial group testing (CGT), the objective is to identify the set of at most $d$ defective items from a pool of $n$ items using as few tests as possible. The celebrated result for the CGT problem is that the number of tests $t$ can be made logarithmic in $n$ when $d=O(poly(\log n))$. However, state-of-the-art GT codes require the items to be tested $w=��(d\log n)$ times and tests to include $��=��(n/d)$ items (within log factors). In many applications, items can only participate in a limited number of tests and tests are constrained to include a limited number of items. In this paper, we study the "sparse" regime for the group testing problem where we restrict the number of tests each item can participate in by $w_{\max}$ or the number of items each test can include by $��_{\max}$ in both noiseless and noisy settings. These constraints lead to an unexplored regime where $t$ is a fractional power of $n$. Our results characterize the number of tests $t$ as a function of $w_{\max} (��_{\max})$ and show, for example, that $t$ decreases drastically when $w_{\max}$ is increased beyond a bare minimum. In particular, if $w_{\max}\leq d$, then we must have $t=n$, i.e., individual testing is optimal. We show that if $w_{\max}=d+1$, this decreases suddenly to $t=��(d\sqrt{n})$. The order-optimal construction is obtained via a modification of the Kautz-Singleton construction, which is known to be suboptimal for the classical GT problem. For more general case, when $w_{\max}=ld+1$ for $l>1$, the modified K-S construction requires $t=��(d n^{\frac{1}{l+1}})$ tests, which we prove to be near order-optimal. We show that our constructions have a favorable encoding and decoding complexity. We finally discuss an application of our results to the construction of energy-limited random access schemes for IoT networks, which provided the initial motivation for our work.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
bronze