
arXiv: 2302.09404
Semantic face image manipulation has received increasing attention in recent years. StyleGAN-based approaches to face morphing are among the leading techniques; however, they often suffer from noticeable blurring and artifacts as a result of the uniform attention in the latent feature space. In this paper, we propose to develop a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods. Our contributions are threefold. First, inspired by GANformer, we introduce a bipartite structure to exploit long-range interactions in face images for iterative propagation of information from latent variables to salient facial features. Special loss functions are designed to support the optimization of face morphing. Second, we extend the study of transformer-based face morphing to demorphing by presenting an effective defense strategy with access to a reference image using the same generator of MorphGANFormer. Such demorphing is conceptually similar to unmixing of hyperspectral images but operates in the latent (instead of pixel) space. Third, for the first time, we address a fundamental issue of vulnerability-detectability trade-off for face morphing studies. It is argued that neither doppelganger norrandom pair selection is optimal, and a Lagrangian multiplier-based approach should be used to achieve an improved trade-off between recognition vulnerability and attack detectability.
13 pages, 13 figures
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
