Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arteriosclerosis Thr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arteriosclerosis Thrombosis and Vascular Biology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bone Marrow– or Vessel Wall–Derived Osteoprotegerin Is Sufficient to Reduce Atherosclerotic Lesion Size and Vascular Calcification

Authors: Hsueh Yang; M.L. Coons; Michael E. Rosenfeld; Philippe Huber; Jerry Ricks; Ted S. Gross; Andrea Callegari; +1 Authors

Bone Marrow– or Vessel Wall–Derived Osteoprotegerin Is Sufficient to Reduce Atherosclerotic Lesion Size and Vascular Calcification

Abstract

Objective— Osteoprotegerin (OPG) is a decoy receptor for the osteoclast differentiation factor receptor activator of NF-κB ligand. OPG regulates bone homeostasis, and its inactivation in mice results in severe osteoporosis. OPG deficiency in apolipoprotein E (ApoE) −/− mice results in increased atherosclerotic lesion size and calcification. Furthermore, receptor activator of NF-κB ligand enhances macrophage-dependent smooth muscle cell calcification in vitro. Here, we hypothesized that reconstitution of ApoE −/− OPG −/− mice with ApoE −/− OPG +/+ bone marrow (BM) would be sufficient to rescue lesion progression and vascular calcification. Conversely, reconstitution of ApoE −/− OPG +/+ mice with ApoE −/− OPG −/− BM may accelerate lesion progression and vascular calcification. Approach and Results— ApoE −/− OPG −/− mice transplanted with ApoE −/− OPG +/+ BM developed smaller atherosclerotic lesions and deposited less calcium in the innominate artery than that of ApoE −/− OPG −/− mice transplanted with ApoE −/− OPG −/− BM. There were no differences in lesion size and calcification in ApoE −/− OPG +/+ mice transplanted with BM from ApoE −/− OPG −/− or ApoE −/− OPG +/+ mice. The large lesions observed in the ApoE −/− OPG −/− mice transplanted with OPG −/− BM were rich in chondrocyte-like cells, collagen, and proteoglycans. Importantly, the ApoE −/− OPG −/− mice transplanted with OPG +/+ BM remained osteoporotic, and the ApoE −/− OPG +/+ mice did not show signs of bone loss regardless of the type of BM received. In coculture experiments, macrophages and mesenchymal stem cells derived from ApoE −/− OPG −/− BM induced more vascular smooth muscle cell calcification than cells derived from ApoE −/− OPG +/+ mice. Conclusions— These results indicate that OPG derived either from the BM or from the vessel wall is sufficient to slow down lesion progression and vascular calcification independent of bone turnover.

Related Organizations
Keywords

Mice, Knockout, Osteoprotegerin, Atherosclerosis, Muscle, Smooth, Vascular, Extracellular Matrix, Mice, Apolipoproteins E, Chondrocytes, Bone Marrow, Disease Progression, Animals, Vascular Calcification, Brachiocephalic Trunk, Bone Marrow Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze