Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reliability of SAC 105 and SAC1205N under Drop Tests

Authors: Jia-Shen Lan; Stuwart Fan; Louie Huang; Mei-Ling Wu;

Reliability of SAC 105 and SAC1205N under Drop Tests

Abstract

Abstract In this paper, the solder joint failure and the solder joint fatigue life in the Thin-profile Fine-pitch Ball Grid Array (TFBGA) Package was investigated by performing the drop test, and implementing a simulation model. Owing to the need to meet the increasing demands for functionality, microelectronic package reliability can be compromised and has become the key issue when executing drop tests. During impact in drop test, the deformation of PCB due to bending and mechanical shocks can cause solder joint crack. While this is a well-known issue, observing the solder joint responses during the test execution can be a challenge. Therefore, in this work, a simulation model approach has been developed to investigate the stress and strain of the solder joint during the drop test. In this research, the JEDEC Condition B drop test was simulated, characterized by 1500G peak acceleration and 0.5 ms duration. The drop test simulation model was successful in predicting the solder joint fatigue life with different solder joint materials, such as SAC105 and SAC1205N, while also facilitating result comparison to identify the most optimal structure.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!