Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuroscie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience Research
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the neonatal parkinsonian rat caudate putamen

Authors: Stefan Jean-Pierre Haas; Christian Andressen; Stanislav Petrov; Andreas Wree; Stephan Beckmann; Oliver Schmitt;

Transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the neonatal parkinsonian rat caudate putamen

Abstract

AbstractThe present study analyzed whether grafts of the mesencephalic progenitor cell line CSM14.1 into the neonatal rat caudate putamen (CPu) differentiate into neurons and whether this is accompanied by a functional improvement in 6‐hydroxydopamine (6‐OHDA)‐lesioned animals. As in previous studies, a neuronal differentiation of CSM14.1 cells transplanted into the CPu of adult animals could not be observed, so we here used neonatal rats, because graft location and host age seemingly are crucial parameters for neural transplant differentiation and integration. Rats bilaterally lesioned at postnatal day 1 by intraventricular 6‐OHDA‐injections 2 days later received 100,000 CSM14.1 cells prelabelled with the fluorescent dye PKH26 into the right CPu. Five weeks after grafting, the cylinder test was performed, and the data compared with data from age‐matched intact controls and bilaterally lesioned‐only animals. Brain slices immunostained for tyrosine hydroxylase (TH) were quantified by optical densitometry. We observed a significant preference of left forelimb use exclusively in transplanted animals. In these rats, TH‐containing perikarya were found in the grafted CPu, presumedly leading to the significant increase of TH‐immunoreactive fibers in this region. Moreover, confocal laser microscopy revealed a differentiation of transplanted PKH26‐labelled CSM14.1 cells into neuronal nuclei antigen or TH‐immunoreactive cells. Thus, CSM14.1 cells differentiate into TH‐containing neurons, which most probably contribute to the preferred forelimb use, indicating a functional integration of CSM14.1 cells into the host basal ganglia loops during early postnatal development. These findings that are in contrast to observations in adult rats suggest instructive cues for neuronal differentiation and integration given by the neonatal microenvironment. © 2007 Wiley‐Liss, Inc.

Keywords

Male, Behavior, Animal, Tyrosine 3-Monooxygenase, Stem Cells, Cell Differentiation, Cell Line, Rats, Neostriatum, Disease Models, Animal, Animals, Newborn, Parkinsonian Disorders, Cell Movement, Mesencephalon, Animals, Organic Chemicals, Rats, Wistar, Oxidopamine, Psychomotor Performance, Stem Cell Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!