Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Endocrinologica
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mitochondrial diabetes and mitochondrial DNA mutation load in MELAS syndrome

Authors: Hyun-Wook, Chae; Ji-Hoon, Na; Ho-Seong, Kim; Young-Mock, Lee;

Mitochondrial diabetes and mitochondrial DNA mutation load in MELAS syndrome

Abstract

Objective: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a very rare condition; it encompasses a diverse group of disorders including diabetes. Phenotypic variability can be attributed to heteroplasmy along with varying proportions of mutant and WT mitochondrial DNA (mtDNA). To examine the clinical relationship between mitochondrial diabetes and mutational load, we analyzed the mtDNA of children and young adolescents with MELAS syndrome using next generation sequencing (NGS). Design and methods: Of 57 subjects with suspected MELAS syndrome, 32 children and young adolescents were diagnosed as MELAS syndrome with mtDNA A-to-G transition at nucleotide 3243. Mutation load studies and NGS were performed for 25 subjects. Results: The mean mutation load was 60.4 ± 18.4% (range: 22.5‒100). Of the 25 subjects with NGS results, 15 (60%) were diagnosed with DM and 2 (8%) were diagnosed with impaired glucose tolerance (IGT). The mutational load of subjects inversely correlated with first symptom onset, age at diagnosis of MELAS syndrome, and DM (P < 0.001). However, mutational load did not correlate with the clinical severity or progression of DM/IGT. There was no significant difference in insulin resistance or sensitivity indices between the low- and high-mutation load groups. During the 3.7 years of follow-up, insulin resistance indices were not significantly different between baseline and follow-up. Conclusions: We can infer that the mutation load in the MELAS syndrome is significantly associated with the onset of symptoms and associated diseases, including mitochondrial diabetes. However, it may not influence disease progression.

Country
Korea (Republic of)
Related Organizations
Keywords

Male, Diabetes Mellitus / genetics*, Adolescent, 610, High-Throughput Nucleotide Sequencing, DNA, DNA, Mitochondrial, Mitochondrial / genetics*, Mitochondria, Glucose Intolerance / genetics, Glucose Intolerance, Mutation, Diabetes Mellitus, MELAS Syndrome, MELAS Syndrome / genetics*, Humans, Female, Mitochondria / genetics*, Child

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
bronze