
AbstractIn this paper we explore different statistical dependency parsers for parsing Telugu. We consider five popular dependency parsers namely, MaltParser, MSTParser, TurboParser, ZPar and Easy-First Parser. We experiment with different parser and feature settings and show the impact of different settings. We also provide a detailed analysis of the performance of all the parsers on major dependency labels. We report our results on test data of Telugu dependency treebank provided in the ICON 2010 tools contest on Indian languages dependency parsing. We obtain state-of-the art performance of 91.8% in unlabeled attachment score and 70.0% in labeled attachment score. To the best of our knowledge ours is the only work which explored all the five popular dependency parsers and compared the performance under different feature settings for Telugu.
Telugu, MSTParser, Electronic computers. Computer science, MaltParser, TurboParser, QA75.5-76.95, Dependency parsing, ZPar
Telugu, MSTParser, Electronic computers. Computer science, MaltParser, TurboParser, QA75.5-76.95, Dependency parsing, ZPar
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
