Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arteriosclerosis Thr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arteriosclerosis Thrombosis and Vascular Biology
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MicroRNA-15b/16 Attenuates Vascular Neointima Formation by Promoting the Contractile Phenotype of Vascular Smooth Muscle Through Targeting YAP

Authors: Fang Liu; Fei Xu; Guoqing Hu; Abu Shufian Ishtiaq Ahmed; Jiliang Zhou; Xiuhua Kang; Wei Zhang;

MicroRNA-15b/16 Attenuates Vascular Neointima Formation by Promoting the Contractile Phenotype of Vascular Smooth Muscle Through Targeting YAP

Abstract

Objective— To investigate the functional role of the microRNA (miR)-15b/16 in vascular smooth muscle (SM) phenotypic modulation. Approach and Results— We found that miR-15b/16 is one of the most abundant mRs expressed in contractile vascular smooth muscle cells (VSMCs). However, when contractile VSMCs get converted to a synthetic phenotype, miR-15b/16 expression is significantly reduced. Knocking down endogenous miR-15b/16 in VSMCs attenuates SM-specific gene expression but promotes VSMC proliferation and migration. Conversely, overexpression of miR-15b/16 promotes SM contractile gene expression while attenuating VSMC migration and proliferation. Consistent with this, overexpression of miR-15b/16 in a rat carotid balloon injury model markedly attenuates injury-induced SM dedifferentiation and neointima formation. Mechanistically, we identified the potent oncoprotein yes-associated protein (YAP) as a downstream target of miR-15b/16 in VSMCs. Reporter assays validated that miR-15b/16 targets YAP’s 3′ untranslated region. Moreover, overexpression of miR-15b/16 significantly represses YAP expression, whereas conversely, depletion of endogenous miR-15b/16 results in upregulation of YAP expression. Conclusions— These results indicate that miR-15b/16 plays a critical role in SM phenotypic modulation at least partly through targeting YAP. Restoring expression of miR-15b/16 would be a potential therapeutic approach for treatment of proliferative vascular diseases.

Related Organizations
Keywords

YAP-Signaling Proteins, Sensitivity and Specificity, Muscle, Smooth, Vascular, Rats, Disease Models, Animal, MicroRNAs, Phenotype, Gene Expression Regulation, Cell Movement, Neointima, Animals, Apoptosis Regulatory Proteins, Carotid Artery Injuries, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze